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Abstract In random matrix theory the spacing distribution functions p(n)(s) are well fitted
by the Wigner surmise and its generalizations. In this approximation the spacing functions
are completely described by the behavior of the exact functions in the limits s → 0 and
s → ∞. Most non equilibrium systems do not have analytical solutions for the spacing
distribution and correlation functions. Because of that, we explore the possibility to use the
Wigner surmise approximation in these systems. We found that this approximation provides
a first approach to the statistical behavior of complex systems, in particular we use it to find
an analytical approximation to the nearest neighbor distribution of the annihilation random
walk.

Keywords Systems out of equilibrium · Random matrices · Wigner surmise

1 Introduction

The equilibrium and non equilibrium one dimensional systems are usually described by
using the spacing distribution functions p(n)(s). This distribution give us the probability
density function that the distance between two particles is s under the condition that between
these particles there are n additional particles. In particular p(0)(s) is the nearest neighbor
distribution, i.e., the probability density that the distance between two adjacent particles is s.
In systems where we have domain formation p(n)(s) is the probability density function that
the distance between two domain borders is s under the condition that between these borders
there are n additional domain borders.

In Ref. [1] the authors study the statistical behavior of several out of equilibrium domain
systems which evolve with formation of domains which grow in time. For intermediate times
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where the size of the domains is much smaller than the total size L of the system, the domain
size distribution exhibit a dynamic scaling. The authors studied the statistical properties of
these domains in the scaling regime. They found that the statistical behavior of those is
similar to the one in random matrices, for example, the nearest neighbor distribution p(0)(s)

of several out of equilibrium domain systems is well fitted by the Wigner surmise which
also describe closely the eigenvalue spacing distribution p(0)(s) in the case of the circular
(COE) and Gaussian (GOE) orthogonal ensembles in random matrix theory (actually this
distribution is exact in the case of 2 × 2 matrices). However, the next distributions (n > 0)

for these systems are different from their counterpart in random matrix theory. Another
important aspect is the pair correlation function g(r) which, in COE and GOE ensembles
and the coalescing random walk and interacting random walk does not have any oscillation
but in other systems g(r) describe one oscillation near to r = 1. For more information see
Refs. [1–4].

In random matrices theory we know the exact expressions for the spacing distribution
functions, however, they are difficult to use, see Ref. [5]. However, in Ref. [6] the au-
thors found an analytical approximation to p(n)(s). This approximation is called generalized
Wigner surmise and provides an excellent fit to the exact spacing distribution functions.

In most non equilibrium domain systems, the main problem is the absence of analytical
expressions for the spacing and correlation functions. In few cases we know the exact so-
lution for p(n)(s), but, in the most of these few cases the solutions are too complicated to
use.

Then, the question is: can we to extend the generalized Wigner surmise proposed in
Ref. [6] to find a good approximation for p(n)(s) and g(r) in the domain systems as it
happens with the random matrix ensembles?

In order to answer this question in Sect. 2.1, we summarize the most important aspects of
the generalized Wigner surmise, introduced in Ref. [6], applied to the Gaussian and Circular
orthogonal ensembles of random matrices. In Sect. 2.2, we extend this method to apply it to
the non equilibrium systems. This extension is straightforward, because we can apply this
method to any system if we know the behavior of p(n)(s) for small and large values of s.
In Sects. 3 to 6, we test this extension of the generalized Wigner surmise by applying it to
several non equilibrium systems.

2 Generalized Wigner Surmise

2.1 Wigner Surmise for Random Matrices

In random matrix theory the analytic expressions for the spacing distribution functions of
eigenvalues p(n)(s) in the circular and Gaussian orthogonal ensembles (COE and GOE re-
spectively) in the limit of large matrices are given in terms of the eigenvalues μi and eigen-
functions fi(x) of the following integral equation, see Ref. [5]:

μifi(x) =
∫ 1

−1
eiπxys/2fi(y)dy. (1)

The spacing distributions are calculated explicitly by using

E(2r, s) =
∞∏
i=0

(1 − λ2i )
∑

0≤j1<j2<···<jr

r∏
i=1

(
λji

1 − λji

)
× [

1 − (bj1 + · · · + bjr )
]
, (2)
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E(2r − 1, s) =
∞∏
i=0

(1 − λ2i )
∑

0≤j1<j2<···<jr

r∏
i=1

(
λji

1 − λji

)
× (bj1 + · · · + bjr ), (3)

where

bj = f2j (1)

∫ 1

−1
f2j (x)dx

/∫ 1

−1
f 2

2j (x)dx, (4)

λj = s|μj |2/4, (5)

and

p(n)(s) = d2

ds2

n∑
j=0

(n − j + 1)E(j, s). (6)

These expressions are difficult to manage, however in Ref. [6], the authors find an excel-
lent approximation for spacing distributions p(n)(s) from their well-known behavior in the
limits s → 0 and s → ∞. This approximation is easy to use and provide an excellent fit to
the exact distributions. We will use this approximation many times in this paper, because of
that, we summarize now its most important aspects.

By definition, p(n)(s) is the probability density that an interval of length s which starts at
a level contains exactly n levels and the next, the n + 1 level, is in [s, s + ds]. In the same
way, let F (n)(s) be the probability that an interval of length s which starts at a level, contains
n levels. By using this definition we can write

F (n)(s) =
∫ ∞

s

(
p(n)(s ′) − p(n−1)(s ′)

)
ds ′. (7)

Additionally, let r(n)(s) be the probability density that an interval [0, s] which starts at a
level at s = 0 is limited by a level on its right side, under the condition that there are exactly
n levels in the interval (0, s), i.e., r(n)(s) is the conditional probability

r(n)(s) = p(n)(s)

F (n)(s)
, (8)

this probability is called level repulsion function. Following Ref. [6], in the limit s → 0, this
equation can be written as

p(n)(s) = r(n)(s)

∫ s

0
p(n−1)(s ′)ds ′. (9)

In the GOE ensemble the matrix elements are chosen using a Gaussian distribution, this
fact suggest that p(n)(s) decays as Gaussian function. The appropriate function for fit is

p(n)(s) = Ans
αne−Bns2

, (10)

under the surmise r(n)(s) → sn+1 with s → 0. Additionally, the functions p(n)(s) satisfy the
normalization conditions ∫ ∞

0
p(n)(s)ds = 1, (11)
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and ∫ ∞

0
sp(n)(s)ds = 1. (12)

By using the surmise for the level repulsion and the normalization conditions, is straight-
forward to find [6]

An = 2
B

(αn+1)/2
n

�
(

αn+1
2

) , (13)

Bn =
[

�
(

αn

2 + 1
)

(n + 1)�
(

αn+1
2

)
]2

, (14)

where

αn = n + (n + 1)(n + 2)

2
. (15)

Then, the approximate spacing distribution functions p(n)(s) are given explicitly by

p(n)(s) =
[

�
(

αn

2 + 1
)

(n + 1)

]αn+1
2sαn

�
(

αn+1
2

)αn+2 e
−

[
�( αn

2 +1)
(n+1)�

(
αn+1

2

)
]2

s2

. (16)

The result obtained for αn coincides with the results obtained by using the exact ex-
pression for the spacing distribution functions, see Ref. [5]. Notice that the approximate
spacing distributions functions are characterized by the level repulsion, normalization con-
dition, scaling condition for the average spacing and Gaussian decay. This approximation
is called generalized Wigner surmise and provides a very good approximation for p(n)(s),
because it reproduce not only the distributions behavior in the limits s → 0 and s → ∞, but
also reproduce their global behavior, as we can see in Fig. 1. In particular the function with
n = 0 is called Wigner distribution. This fit allows us to calculate also the approximate pair
correlation distribution g(r). For this purpose we use

g(r) =
∞∑

n=0

p(n)(r), (17)

then

g(r) = 2
∞∑

n=0

[
�

(
αn

2 + 1
)

(n + 1)

]αn+1
rαn

�
(

αn+1
2

)αn+2 e
−

[
�( αn

2 +1)
(n+1)�

(
αn+1

2

)
]2

r2

. (18)

In Fig. 1 we can see that this is a good approximation for g(r), however, it is not as useful
as the Wigner surmise for p(0)(s) because the exact expression for g(r) is well-known and
easy to use, see Ref. [5].

2.2 Wigner Surmise for Domain Systems

We can apply the method explained above to any system if we know the behavior of the
spacing distribution functions that describe this system for small and large values of s. That
means that we must know the level repulsion of p(n)(s) and its decay functional form.
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Fig. 1 Comparison between the
generalized Wigner surmise and
the COE ensemble. In the
simulation we took 20000
matrices of size 200 × 200

For all systems considered in this paper p(0)(s) is well described by the Wigner distribu-
tion, because of that and following the method used in the random matrix theory we propose
the next model

αn =
{

1 for n = 0
h(n) for n ≥ 1,

(19)

with h(n) is a function to determine which give us the level repulsion of the system. The
spacing distribution functions in this model are given by

p(n)(s) =
{

π
2 se− π

4 x2
if n = 0

Ans
αne−Bnxβn if n ≥ 1,

(20)

using (11) and (12), we find

An = βnB
1+αn
βn

n

�
( 1+αn

βn

) , (21)

and

Bn =
(

�
( 2+αn

βn

)
(1 + n)�

( 1+αn

βn

)
)βn

, (22)

where βn characterize the long distance decay of the distribution function. For βn = 1 we
have Poisson decay and for βn = 2 we have Gaussian decay. Note that our model is very
similar to the one in Ref. [6], the only difference is that we write our equations in terms of a
general level repulsion and we do not use necessarily Gaussian decay.

In this method we fit the exact spacing distribution functions to equation 20 by using its
local behavior for small and large values of s. We shall call this the local fit.

We also can do the fit by using the entire behavior of the system, i.e., considering the
whole interval s ∈ [0,∞[. This method does not have physical meaning but we will use it in
this paper in order to have a reference to compare. In next sections we will call it the global
fit.
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3 Independent Interval Approximation Model (IIA)

The independent interval approximation (IIA) is used as an approximate solution in many
equilibrium and non equilibrium systems [1, 7, 8] in order to find analytical results. In par-
ticular, in Ref. [1] the IIA is used to find an approximate model for the statistical behavior
of two non equilibrium systems which will be explained in next sections. In this approxi-
mation, p(n)(s) is given by the convolution product of n + 1 nearest neighbor distribution
factors, because of that, the spacing distribution functions can be calculated by using the
Laplace transform, see Ref. [7]. However, in most cases we cannot compute explicitly the
inverse Laplace transform in an analytical way for large values of n. Because of that, and
taking into account that this method is commonly used to study many non equilibrium one
dimensional systems, we propose to use the method exposed in previous section to find more
tractable analytical approximate expressions to the distribution function p(n)(s) of the IIA
method.

3.1 Independent Interval Model for Small Values of s

In Ref. [1] the authors choose p(0)(s) equal to the Wigner distribution. In order to apply
the method of the last section, we need to know the behavior of p(n)(s) for small and large
values of s. For the first region we expand the Wigner distribution in power series

p(0)(s) = π

2
se− π

4 s2 = π

2
s
(

1 − π

4
s2 + · · ·

)
, (23)

then, to the first order, the nearest neighbor distribution p(0)(s) has a lineal behavior, given
by

p(0)(s) ∝ s. (24)

In the same limit s → 0, by using the independent interval approximation for arbitrary
values of n, we have

p(n)(s) ∝
∫

0<x1<x2···<xn<s

x1(x2 − x1) · · · (s − xn)dx1 · · ·dxn, (25)

which can be evaluated by using the Laplace transform

p̃(n)(t) ∝ 1

t2(n+1)
, (26)

and then, taking its inverse

p(n)(s) ∝ s2n+1. (27)

As consequence, in the IIA case the exponent αn depends linearly on n

αn = 2n + 1. (28)

By using this result it is possible to determine the behavior of the level repulsion function
for s → 0. Following Ref. [6] we have

r(n)(s) ∝ sf (n), (29)
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where f (n) is the function to determine. By using (9), we can write

p(n)(s) ∝ sf (n)

∫ s

0
p(n−1)(s ′)ds ′, (30)

then

p(n)(s) ∝ sf (n)+···+f (0)+n. (31)

By comparing (27) with (31) is straightforward to find

f (n) = 1, (32)

for all n ≥ 0, as a consequence

r(n)(s) ∝ s, s → 0, (33)

then, the level repulsion does not depend on n as it happens in the COE/GOE case.

3.2 Independent Interval Model for Large Values of s

Now, we need the behavior of p(n)(s) for large values of s. The exact expression for p(n)(s)

is

p(n)(s) =
∫

0<x1<x2···<xn<s

p(0)(x1)p
(0)(x2 − x1) · · ·p(0)(s − xn)dx1 · · ·dxn. (34)

In our case p(0)(s) is given by the Wigner surmise,

p(0)(s) = π

2
s e−πs2/4, (35)

then

p(n)(s) =
(π

2

)n+1
∫

0<x1<x2···<xn<s

x1e
− π

4 x1
2 · · · (s − xn)e

− π
4 (s−xn)2

dx1 · · ·dxn. (36)

We can calculate the behavior of these functions for arbitrary values of n in the limit s → ∞
as we show next. From Ref. [1] we know that at least the first two spacing distribution
functions decay like Gaussian functions, then, we assume that for arbitrary values of n these
functions have the form p(n)

asy(s) = Mns
γne−Nns2

in the limit s → ∞. In order to eliminate
the integrals in (36) we use the Laplace transform

p̃(n)(l) =
(

1 − lel2/π erfc

(
l√
π

))n+1

, (37)

where erfc(z) = (2/
√

π)
∫ ∞

z
e−t2

dt is the complementary Gaussian error function. In the
same way we take the Laplace transform in p(n)

asy . Additionally, we expand both transforms
in Taylor series around l = 0. Let be Zj the j th coefficient in the expansion of (37) and Yj is
the one for the Laplace transform of p(n)

asy(s). We find that the coefficients of both expansions
satisfy the relation Yi/Zi = Yj/Zj in the limit i, j → ∞. By using this method we can find
Mn, Nn and γn. In fact we find that Nn = π

4n
and γn = n + 1. In general, if we know p(0)(s)

we can calculate the asymptotic behavior of p(n)(s) under the assumption that the IIA is
valid for s → ∞, but, as we will see in next sections, this is not always true.
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Fig. 2 Comparison between the
exact statistical behavior of IIA,
the generalized Wigner surmise
(local fit) and the global fit

Fig. 3 Log-Log graphic for the
spacing distribution functions
for IIA

In the Fig. 2 we compare the exact statistical behavior of IIA with the generalized Wigner
surmise, i.e., with a fit developed by using the behavior of p(n)(s) in the limits s → 0 and
s → ∞, because of that from now on we will call it local fit. Also, we compare the global
fit which was developed by using (19) to (22) and the complete behavior of p(n)(s) in the
interval [0,∞[. By using the values of αn found in the global fit, we developed a new fit to
determine the global behavior of αn, explicitly in this case we have

αn = 1.8268n + 0.9954, (38)

this result is close to the exact exponent (28), even when we use wrong functions in the fit;
for example, the exact result for p(1)(s) is, see Ref. [1]

p(1)(s) = π

16
e− πs2

4

(
4s + √

2e
πs2

8
(−4 + πs2

)
erf

(
1

2

√
π

2
s

))
, (39)
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Fig. 4 Asymptotic behavior for
s → ∞ of the spacing
distribution functions

which is very different form our surmise, however, both functions (20) and (39) have the
same type of behavior in the limits s → 0 and s → ∞. Equation (18) for the correlation
function it is still valid in both cases, global and local fit, we must only use (28) and (38)
respectively. The main problem in the global fit approximation it is the use of non integer
exponents in the level repulsion. Figure 3 show the differences between the three cases for
small values of s, naturally in this region the graph of the global fit is not parallel to graph
of the exact result as it actually happens in the local fit approximation. In Fig. 4 we can see
the linear behavior of p(n)(s) in limit s → ∞, which implies that the distribution functions
decay like a Gaussian function as it was to be expected.

4 Coalescing and Annihilation Random Walks

4.1 Coalescing Random Walk (CRW)

In the coalescing random walk, the particles describe independent random walks along a
one dimensional lattice and they are subjected to the reaction A + A → A. This system is
well studied [2, 9–11] and its analytical solution is well-known, because of that, it is used as
an approximation to more complex systems. Let q(n)(s) be the conditional probability that
given one particle its next neighbor is at a distance s. From its definition q(n)(s) is given by

q(n)(s) =
∫

0<y1···<yn<s

ω(n+2)(0, y1, . . . , yn, s)dy1 · · ·dyn, (40)

with

ω(n)(x1, . . . , xn) = −∂nE(n−1)(x1, y1, . . . , xn−1, yn−1)

∂x1 · · · ∂xn−1∂yn−1

∣∣∣∣
y1=x2,...,yn−1=xn

, (41)

E(n)(x1, y1, . . . , xn, yn, t) =
(2n−1)!!∑

p=1

σpE(1)(z1,p, z2,p, t) · · ·E(1)(z2n−1,p, z2n,p, t), (42)
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where z1,p, z2,p, . . . , z2n,p symbolize an ordered permutation, p, of the variables x1, y1, . . . ,

xn, yn, such that

z1,p < z2,p, z3,p < z4,p, . . . , z2n−1,p < z2n,p, (43)

and

z1,p < z3,p < z5,p · · · < z2n−1,p. (44)

The function E(1)(x1, y1, t) is the probability that from x1 to y1 the lattice is empty at
time t . Then it is possible generate the complete solution for the CRW from E(1)(x1, y1, t),
which is given by the solution of the diffusion equation under the suitable boundary condi-
tions (see Ref. [2]). In fact, the exact expression for this function is

E(1)(x1, y1, t) = erfc

(
y1 − x1√

8Dt

)
, (45)

with D the diffusion constant and t the time, for additional information see Ref. [2]. For
practical purposes, the solution given by (40) to (45) is hard to evaluate for arbitrary values
of n but it can be evaluated in the limit s → 0 using Taylor series. The case n = 0 is trivial,
the Taylor expansion for (45) is

E(1)(x1, y1, t) = 1 − y1 − x1√
2π(Dt)1/2

+ (y1 − x1)
3

24
√

2π(Dt)3/2
− (y1 − x1)

5

640
√

2π(Dt)5/2
+O(x,y)7, (46)

then

q(0)(x2, x1) = ω(2)(x1, x2) = − ∂2

∂x1∂y1
E(1)(x1, y1, t)

∣∣∣∣
y1=x2

, (47)

q(0)(x2, x1) = x2 − x1

4
√

2π(Dt)3/2
− (x2 − x1)

3

32
√

2π(Dt)5/2
+ O(x)5. (48)

Making the variable change s = x2−x1√
2πDt

and taking into account that p(0)(s) =
2πDt q(0)(x2, x1), the product Dt disappears (dynamical scaling) in the above equation.
Then, to first order, we have

p(0)(s) = sπ

2
+ O(s)3. (49)

For small values of s, p(0)(s) has a linear behavior, i.e., α0 = 1. The case n = 1 is more
complicated, in fact we have

ω(3)(x1, x2, x3) = − ∂3

∂x1∂x2∂y2
E(2)(x1, y1, x2, y2, t)

∣∣∣∣
y1=x2,y2=x3

, (50)

where

E(2)(x1, y1, x2, y2, t) = E(x1, y1, t)E(x2, y2, t) + E(x1, y2, t)E(y1, x2, t)

− E(x1, x2, t)E(y1, y2, t), (51)

then

ω(3)(x1, x2, x3) = (x2 − x1)(x3 − x1)(x3 − x2)

32π(Dt)3
+ O(x)4, (52)
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in that way q(1)(x1, x3, t) is given by

q(1)(x3, x1, t) =
∫ x3

x1

(x2 − x1)(x3 − x1)(x3 − x2)

32π(Dt)3
dx2 + O(x)5. (53)

Integrating

q(1)(x3, x1, t) = (x3 − x1)
4

192π(Dt)3
+ O(x)5. (54)

Using again the variable change, it is straightfoward to find

p(1)(s) = π2s4

24
+ O(x)5, (55)

we conclude that α1 = 4. In general for an arbitrary value of n, we find that the first term in
the expansion is

q(n)(x1, xn, t) ∝
∫ xn

x1

· · ·
∫ x3

x1

∏
1≤i<j≤n

(xj − xi)dx2 · · ·dxn−1, (56)

therefore, the above equation has (n + 1)(n + 2)/2 different factors which implies that the
integrand is proportional to x

(n+1)(n+2)/2
i . Making the integral and the usual variable change,

the final expression for small values of s is proportional to s(n+1)(n+2)/2+n, explicitly, we have

αn = n + (n + 1)(n + 2)

2
. (57)

This is the same result reported in Ref. [6] for the GOE/COE case and coincides with the
partial result presented in Ref. [11] for the CRW. We made again both fits, global and local.
The global fit was made with the data from our simulation where we use a lattice with 1000
sites and 500 particles in t = 0. The data to build the histograms was taken at three different
times T = 50, T = 100 and T = 200 over 50000 realizations. In this case the global fit is
not as accurate as in the IIA case as we can see in Figs. 5, 6 and 7, but it still is a good
approximation. We use again (19) to (22); and additionally we supposed a Gaussian decay
(βn = 2). The global fit gives

αn = 2.8688n + 0.8621. (58)

The global fit gives an erroneous exponent which depend linearly with n, this result it
does not coincide with the analytical result (57), where, αn is a quadratic function of n.
The local fit it is very different from the simulation results and coincides with the statistical
behavior of the COE/GOE ensembles.

4.2 Annihilation Random Walk

In the annihilation random walk, the particles describe independent random walks along the
one dimensional lattice but they are now subjected to the annihilation reaction A + A → 0
when two particles meet at the same site. It is known that the nearest neighbor distribution
p(0)

ann(s) has a very different behavior from the Wigner distribution considered in the other
models presented here. In particular, p(0)

ann(s) has an exponential decay for large s instead of
a Gaussian decay.
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Fig. 5 Comparison between the
statistical behavior of CRW, the
global fit and the local fit

Fig. 6 Log-Log graphic for the
spacing distribution functions of
the CRW

Fig. 7 Statistical behavior of
CRW for small values of s
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However, we can use the local or the global fit for p(n)(s) of the coalescing random walk
found in the previous section to obtain p(0)

ann(s) of the annihilation random walk. This can be
done using the relation found in Ref. [11]

p(0)
ann(s) =

∑
n≥0

1

2n
p(n)(2s). (59)

For short distances s → 0, using the local fit for the distribution functions p(n)(s) of the
CRW, found in the previous section, into (59), we obtain

p(0)
ann(s) = πs − π2s3 + 65536

729π3
s4 + π

2
s5 + O(s6), s → 0, (60)

which favorably compares to the exact result derived by Derrida and Zeitak [12]

p
(0)
ann,exact(s) = πs − π2s3 + π2

3
s4 + π3

2
s5 + O(s6), s → 0. (61)

Up to order 5, only the coefficient of order 4 differs, but nevertheless with a numerical
difference of only 12%,

π2

3
s4 ≈ 3.30s4 and

65536

729π3
s4 ≈ 2.90s4. (62)

In comparison, the result obtained in Ref. [8] using the IIA, gives a much worse approxima-
tion than ours,

p
(0)

ann,IIA(s) = πs − 5

6
π2s3 + 0 + 49π3

120
s5 + O(s6), s → 0. (63)

In order to test numerically the validity of our approximations for any value of s, we
implement a simulation for the annihilation random walk for a one dimensional lattice with
2000 sites, 100 particles at t = 0 over 20000 realizations, the histogram was build using
three times T = 1000, T = 1500 and T = 2000. By using the global and the local fit for
the distribution functions p(n)(s) of the CRW, with (59), we obtain two numeric approxi-
mations for p(0)

ann(s) of the annihilation random walk (numerically, we summed 200 terms in
expression (59)).

We can see in Fig. 8 that the global and local fits provide a good approximation for the
nearest neighbor distribution of the annihilation random walk. Additionally, Fig. 9 compare
the long distance behavior of p(0)

ann(s) obtained by our method with the global and the local
fit, with the asymptotic exact result

p
(0)
ann,exact(s) ≈ 1.8167e−1.3062s, s → ∞, (64)

given in Ref. [12]. In the same figure, it is also compared to the IIA approximation of
Ref. [8], rederived in Ref. [11],

p
(0)

ann,IIA(s) ≈ 1.6777e−1.2685s , s → ∞, (65)

and an “improved IIA” approximation proposed in Ref. [11], based on (59) and taking into
account correlations of third order in the distribution functions p(0)(s) of the CRW,

p
(0)

ann,iIIA(s) ≈ 1.7290e−1.2853s, s → ∞. (66)
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Fig. 8 Approximation for

p
(0)
ann(s) by using global and

local fits

Fig. 9 Asymptotic behavior

of p
(0)
ann(s)

From Fig. 9 it is clear that our approximations for p(0)
ann(s) exhibit an exponential decay

for large s: p(0)
ann(s) ≈ a exp(−bs). Numerically, we evaluated, for the local fit,

a = 1.8892 ± 0.0082, b = 1.3193 ± 0.0021, (67)

and, for the global fit,

a = 1.84733 ± 0.0014, b = 1.31367 ± 0.00036. (68)

Our approximation give results more close to the exact result (64) than the ones of (65)
and (66).
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5 Spin System

This system was introduced in Ref. [3], where the authors consider a chain of L Ising spins
with nearest neighbor ferromagnetic interaction J . The chain is subject to spin-exchange
dynamics with a driving force E that favors motion of up spins to the right over motion
to the left. After an initial transient regime, domains of spins up and domains of spin down
form. These domains grow in time exhibiting a scaling behavior. We study the scaled domain
size distribution p(0)(s), and more generally the spacing distribution functions of the edges
of the domains p(n)(s) as defined in the introduction.

For this system, we do not have an analytical expression for the spacing distribution func-
tions, because of that, we must start exploring numerically the behavior of p(n)(s) for small
and large values of s. In Fig. 10, we can see the linear behavior of the spacing distribution
function for s → 0. Using values in this region we develop a fit which suggest that α1 = 3
and α2 = 6 approximately. Naturally α0 = 1, however it is very difficult to know using this
method the next exponents because it is not possible develop a numerical simulation with
enough precision.

Curiously, these exponents for n = 0,1,2 are given by the equation

αn = (n + 1)(n + 2)

2
, (69)

which is very similar to its counterpart in COE and GOE cases. For s → ∞, p(n)(s) decays
like a Gaussian function as we can see in Fig. 11. In this case the global fit gives

αn = 1.270n + 0.920. (70)

In Fig. 12, we show the results given by (19) to (22) for the global fit in comparison
with the simulation results which was made with a lattice with 1000 sites, equal number of
spins up and down taken at two times t = 34 and t = 48 to build the histograms. The result
for g(r) is very good with a maximum error of 2.5%. Unfortunately this approximation is
not good enough for p(n)(s) but at least it reproduce qualitatively the behavior of the real
functions for s → ∞. The local fit gives terrible results as it happens in the CRW case.

Fig. 10 Log-Log graphic for the
spacing distribution functions of
spin system
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Fig. 11 Asymptotic behavior of
the spin system

Fig. 12 Comparison between
the statistical behavior of the spin
system and the global fit

6 Gas System

This system was originally studied in Ref. [4]. There, the authors studied the biased diffusion
of two species in a fully periodic 2 × L rectangular lattice half filled with two equal number
of two types of particles (labeled by their charge + or −). An infinite external field drives the
two species in opposite directions along the x axis (long axis). The only interaction between
particles is an excluded volume constraint, i.e., each lattice site can be occupied at most by
only one particle. This system also has a scaling regime with formation of domains filled
with particles (regardless of their type) and of empty domains. It is convenient to consider an
effective one-dimensional coarse grained version of the system, using the method explained
originally in Ref. [4]. We are interested in the scaled spacing distribution functions of the
edges of the domains of the effective one-dimensional coarse grained version of the system.

As it happens in the spin system, we do not know the analytic expression of the spacing
and pair correlation functions. We follow the same numeric method used in the spin system.
In Fig. 13, we can see the linear behavior of p(n)(s) which, by fit, give us α1 = 3 and α2 = 5
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Fig. 13 Log-Log graphic for the
spacing distribution functions of
gas system

approximately, and of course α0 = 1. This fact suggest a linear behavior for αn given by

αn = 2n + 1 (71)

but again we could not find the next exponents with enough precision in order to validate the
above equation. For s → ∞ we found that p(0)(s) decays like a Gaussian function (β0 = 2),
but for n > 0, we found that βn is an indeterminate function of n. For example, in Fig. 14,
we can see the asymptotic behavior for two consecutive spacing distribution functions, the
figure suggest β0 = 2 for p(0)(s) and β1 �= 2 for p(1)(s) as it happens in Ref. [13]. Because
it is difficult determine the exact value of βn from the graphics, we implement a linear
regression to find which value of βn give us a better “straight” line. With this method we
find, for example, that β1 = 2.6 for n = 1, β5 = 3 for n = 5 and β8 = 3.2 for n = 8. In the
linear regressions we took values between 5.5 ≥ s ≥ 2.5, 11.7 ≥ s ≥ 7 and 15.5 ≥ s ≥ 10
respectively. Because of that, for the gas system we propose a model where βn depends on n.
In particular, we choose βn = 2.6 + 0.1(n − 1). With this model, the global fit gives

αn = 1.016n + 0.788. (72)

The results of the global fit are shown in Fig. 15, again we find good fit for g(r) with a max-
imum error of 2% approximately but the agreement for p(n)(s) is not so good. Additionally,
we include the first spacing distribution obtained with the local fit and our model for βn.

7 Conclusion

In COE and GOE ensembles, the spacing distribution functions p(n)(s) can be well de-
scribed by using their behavior for small and large values of s (local fit) as it happens in
IIA case, however, this is not true for more complex systems like CRW, spin and gas sys-
tems. This result was to be expected because in general the spacing distribution functions
are characterized also by their inter medium behavior. In general, the global fit gives better
results in comparison with the local fit but it fails to reproduce the level repulsion, in fact,
gives non integer exponents. The level repulsion for the CRW has the same behavior that the
circular and Gaussian orthogonal ensembles, i.e., both systems are equivalents for s → 0.
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Fig. 14 Asymptotic behavior of p(0)(s) and p(1)(s) for the gas system

Fig. 15 Comparison between
the statistical behavior of the gas
system and the global fit

The numerical results suggest that the IIA and the gas system are also equivalents in that
region. We find numerical evidence that the spacing distributions functions for gas system is
described by a non universal function, in fact, they decay as Mns

γne−Nn sβn for n > 0, with
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βn an indeterminate function of n. In general the global and local fit provides a first approx-
imation for p(n)(s) and g(r), which can be used as a good approximation as it happens in
the annihilation random walk case. These approximations also serve to classify the spacing
distribution functions according to their level of repulsion and their decay functional form.
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